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THERAPEUTIC STUDIES 

Lawrence V. Rubinstein, PhD 

The investment in therapeutic oncology studies in North America 
is enormous. Every year, approximately 20,000 potential anticancer 
agents are screened by the United States National Cancer Institute (NCI) 
in vitro human tumor cell line assay, and in 1999 approximately 30 new 
agents were taken to clinical trial.", 37 In North America there are cur- 
rently 10 government-funded cancer cooperative clinical trials groups 
(American College of Surgeons Oncology Group, Cancer and Leukemia 
Group B, Children's Oncology Group, Eastern Cooperative Oncology 
Group, Gynecologic Oncology Group, National Cancer Institute of Can- 
ada, National Surgical Adjuvant Breast and Bowel Project, North Central 
Cancer Treatment Group, Radiation Therapy Oncology Group, and 
Southwest Oncology Group) and approximately 60 cancer centers, pri- 
marily large academic medical centers. Among them, they represent 
approximately 8000 investigators at 1700 institutions and place more 
than 20,000 patients on therapeutic studies annually.", 37 

By 1960, the current clinical pathway for the development of a 
potential anticancer agent or regimen had been definedI4: phase I trials 
of approximately 20 patients to determine the appropriate dose and 
schedule for further testing, usually the maximal tolerated dose (MTD); 
followed by phase I1 trials of approximately 30 to 50 patients to establish 
an indication of clinical effect, usually tumor shrinkage; followed by 
randomized phase I11 trials involving hundreds or thousands of patients 
to test clinical efficacy, usually defined as the ability to prolong survival, 
compared with a control therapy. Since the early 1960s, the cooperative 
groups have accrued patients according to standardized clinical proto- 
cols, with standardized criteria of diagnosis, treatment, and measure- 
ment of effect and with a prospective statistical design and collaborative 
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analysis and reporting. The early development of the cooperative group 
statistical centers was led by NCI statistician Marvin S~hneiderman,'~ 
and since then statisticians from the National Institutes of Health (NIH) 
and from cooperative group and cancer center statistical centers have 
developed most of the new statistical methodology for the design, con- 
duct, and analysis of cancer clinical studies.37, 41 

A significant body of literature reviews clinical trials methodology. 
For cancer trials in particular, possibly the most inclusive recent work is 
that of Piantadosi.34 Two shorter, but still comprehensive, studies are 
that by Leventhal and Wittes,26 which gives a clinician's perspective, and 
that of Green et a1,16 which gives a statistician's perspective. Simon43 has 
written a useful chapter in the text by DeVita et a1 and has also written 
a review of clinical trials methodology41 in the active decade of the 
1980s. The author has drawn on these sources liberally in this article 
and has also referred to original methodology papers. This article at- 
tempts, as much as possible, to keep the discussion on an intuitive and 
nontechnical level. It elucidates the problems in basic design, conduct, 
and interpretation associated with phase I, phase 11, and phase I11 trials 
and explains how the various statistical approaches have arisen as solu- 
tions to these problems. The fundamental problem common to all three 
trial types is that of achieving a correct and precise answer to the 
question posed by the trial, to inform future testing and treatment better, 
while protecting the trial patients from receiving treatment that has 
demonstrated excessive toxicity or lack of clinical efficacy. This shared 
problem gives rise to statistical designs with basic similarities across the 
three trial types. 

PHASE I TRIALS 

The objective of a phase I trial is to determine the appropriate 
dosage of an agent or combination regimen that will be taken to further 
study and to provide initial pharmacologic and pharmacokinetic studies. 
At this stage of testing it is generally assumed that increased dose is 
associated with increased chance of clinical efficacy, so the phase I trial 
is designed as a dose-escalation study to determine the MTD, that is, 
the maximum dose associated with an acceptable level of dose-limiting 
toxicity (DLT). (Dose-limiting toxicity is usually defined as toxicity of 
grade 3 or higher, except for grade 3 neutropenia unaccompanied by 
either fever or infe~tion.4~) This MTD is then taken into further testing. 
Because efficacy is generally not an important endpoint in phase I trials, 
it is not necessary to restrict the trial population to patients homoge- 
neous with respect to disease or even to patients with measurable 
disease (for which tumor response is determinable), but it is important 
to exclude patients with impaired organ function who might therefore 
be more prone to serious toxicity. The fundamental conflict in phase I 
trials is between escalating the dosage too rapidly, exposing patients to 
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excessive toxicity, and escalating too slowly, depriving patients of treat- 
ment at potentially efficacious dose  level^.^ 

The first problem is deciding on a safe but not overly conservative 
initial dosage for the trial. If the agent is new to clinical testing, this 
dosage must be based on animal studies. It has been determined that 
the dose (defined in mg/m2 of body surface area) associated with 10% 
lethality in mice (MELD,,) can be predicted to be roughly equivalent to 
the human MTD.I7 Therefore, the initial dose is taken to be either one 
tenth of the MELD,, or, if smaller, one third of the LD,, associated with 
the beagle dogz6 The next problem is defining dose increments for the 
subsequent dose levels, and it is here that the various phase I trial 
designs differ. 

Standard Phase I Design 

To define dose levels beyond the initial dose, the standard phase 
I design uses a set of decreasing Fibonacci increments proposed by 
Schneiderman;8 currently taken to be loo%, 67%, 50%, 40%, and 33% 
d~ereafter.~ These increments are added to each dose level to determine 
the succeeding level. In other words, the second dose level is 100% 
greater than the first, the third is 67% greater than the second, and so 
forth. This schedule allows more aggressive dose escalation for the initial 
levels, which are expected to be sufficiently removed from the MTD for 
such escalation to be safe. 

The standard rule governing dose escalation from one level to the 
next makes no assumptions concerning the shape of the dose-toxicity 
curve or the potential for cumulative toxicity; the decision to escalate to 
the next dose level is based solely on first-course toxicity results of the 
current level. The dose escalation rules proceed as shown in Table 1 
escalating in cohorts of three to six patients per dose level." Up to three 
patients are treated at the current dose level. If at least two patients are 
observed to have DLT, the prior dose level is defined as the MTD (unless 
only three patients have been treated at that level, in which case it is the 

Table 1. DOSE ESCALATION RULES FOR THE STANDARD PHASE I TRIAL 

Outcome: First-course 
DLTlPatients 

0 DLT out of 3 patients 
1 DLT out of 3 patients 
2 2  DLT out of 3 patients 

1 DLT out of 6 patients 
2 2  DLT out of 6 patients 

Action: Escalate, Suspend, 
or Halt Dose Escalation 

Escalate dose for next cohort of 3 patients 
Treat next cohort of 3 patients at the same dose 
Halt dose escalation: treat total of 6 patients at previous 

Escalate dose for next cohort of 3 patients 
Halt dose escalation: treat total of 6 patients at previous 

dose to determine MTD 

dose to determine MTD 

DLT = dose-limiting toxicity; MTD = maximal tolerated dose (the highest dose for which no 
more than one of the six treated patients exhibits DLT) 
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tentative MTD). If none of the three patients is observed to have DLT, 
the dose level is escalated one step for the next cohort of up to three 
patients, and the process continues as described. If exactly one of the 
three patients treated shows DLT, up to three additional patients are 
treated at the current dose level. If none of these additional three patients 
shows DLT, the dose level is escalated for the next cohort of up to three 
patients, and the process continues; otherwise, the prior dose level is 
defined as the MTD (unless only three patients have been treated at that 
level, in which case it is the tentative MTD). A tentative MTD becomes 
final when a total of six patients are treated at that level with fewer than 
two showing DLT. 

Table 2 shows the statistical operating characteristics of this ap- 
proach. If at least two of three patients treated at a particular dose show 
DLT, there is 90% confidence that the true probability of DLT at that 
dose is greater than 20%. (In other words, as shown in Table 2, unless 
the true probability of DLT at that dose is at least 20%, the probability 
of at least two out of three patients exhibiting DLT is less than lo%.) On 
the other hand, if none of three patients shows DLT, there is 90% 
confidence that the true probability of DLT is less than 55%. (Again, as 
in Table 2, unless the true probability of DLT is less than 55%, the 
probability of none of three patients exhibiting DLT is less than lo%.) In 
the interest of efficiency, either of these situations can be accepted as 
sufficient to decide whether to halt or continue escalation after treating 
only three patients at the current level. Allowing for expansion to six 
patients in case one of the initial three patients shows DLT, the dose 

Table 2. PROBABILITIES OF HALTING OR CONTINUING DOSE ESCALATION FOR 

DOSE LEVEL, FOR THE STANDARD PHASE I DESIGN 
VARIOUS PROBABILITIES OF DOSE-LIMITING TOXICITY ASSOCIATED WITH THE 

True Probability of DLT 
for Dose Level .05 .1 .2 .3 .4 .5 .6 .7 

Probability of halting dose .03 .09 2 9  .51 .69 .83 .92 .97 
escalation after accruing 
either 3 or 6 patients 
( 2 2  DLT)* 

Probabilitv of continuine .86 .73 .51 .34 22  .13 .06 .03 
escalatik after only 3” 
patients (0 DLT)t 

escalation after only 
three patients 
( 2 2  DLTM 

Probability of halting .01 .03 .10 .22 .35 .50 .65 .78 

W s  row gives probabilities of halting dose escalation, at a given dose, if the true probability of 
DLT for that dose level is as indicated. 

tThese rows give probabilities of continuing or halting dose escalation after accruing only three 
patients, at a given dose, if the true probability of DLT for that dose level is as indicated. In all cases, 
the cohort will be limited to three patients with at least 50% probability, and for the more extreme DLT 
probabilities (.05 or .7), the cohort will be expanded to six patients with less than 20% probability. 
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escalation rule gives 91% probability that dose escalation will not halt at 
doses associated with DLT probability less than lo%, and it gives 92% 
probability that escalation will not proceed beyond doses associated 
with DLT probability in excess of 60% (Table 2). The process of ap- 
proaching the MTD from below, in successive steps, further protects 
against defining an MTD associated with excessive toxicity. Table 2 plus 
simulations15, z3 show that, for a wide variety of dose-toxicity curves, the 
probability is approximately 85% to 90% that the defined MTD will be 
associated with DLT probability of approximately 10% to 45%. 

The primary criticisms of the standard phase I design are15, 32, 45, 49: 

1. The design does not target a particular probability of DLT to be 
associated with the MTD; in practice, the DLT rate associated 
with the defined MTD will depend somewhat on the DLT rates 
of the various dose levels. 

2. The MTD definition is unnecessarily imprecise because it does 
not make adequate use of all the available toxicity data. 

3. The dose escalation is unnecessarily slow, so that excessive num- 
bers of patients are treated at dose levels less likely to be effica- 
cious. 

StorelA9 proposed defining the MTD by fitting all the first-course toxicity 
data to a logistic dose-toxicity curve (a sigmoidal curve that maps dose 
levels to associated DLT rates, for example, as in Equation [1]) and 
letting the MTD be the dose level associated with the targeted DLT rate 
(usually 20%-30%), thus addressing the first two criticisms of the stan- 
dard design. To address the third criticism, he suggested escalating the 
dose in single-patient cohorts until DLT is observed, at which point dose 
escalation would revert to the standard design. 

Continual Reassessment Method 

Others15, 32 have proposed using. a logistic dose-toxicity model to 
guide the dose escalation and to define the MTD, using a Bayesian 
approachz7 to define the model initially according to investigator expec- 
tations and updating it with toxicity data obtained during the trial. 
Goodman et all5 proposed using the following one-parameter logistic 
model for DLT probabilities Pi at dose levels xi: 

exp(3 + axi) 
1 + exp(3 + axi) pi = 

with parameter a given at trial start the standard exponential distribu- 
tion with mean and variance equal to one. To represent the investigators’ 
initial expectations of the dosetoxicity relationship, the doses xi are 
recalibrated so that, when substituted into the model, letting a be equal 
to one (its mean according to the initially given exponential distribution), 
they yield for the Pis the investigators’ initial expectations for the proba- 
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bilities of DLT at the doses xi. In Bayesian terms, the dose-toxicity model 
is initially based on the prior distribution of a, the distribution used 
before the collection of data. Through the variability associated with a, 
the model represents the substantial uncertainty of the investigators’ 
initial expectations. An indication of this uncertainty is that the dose 
associated with DLT rate of 20%, according to the investigators’ initial 
expectations, is given by the model, a 33% probability of actually being 
associated with a DLT rate in excess of 75% and also a 20% probability 
of being associated with a DLT rate less than 5%. As each successive 
patient is treated, the distribution of a is recalculated according to Bayes’ 
theoremz7 to reflect the new data and the greater certainty associated 
with the dose-toxicity relationship. Equation (l), with a having this 
recalculated posterior distribution, eventually reflects the dose-toxicity 
pattern actually observed, with substantially less uncertainty associated 
with the predicted DLT rates p,. 

The continual reassessment method (CRM) involves defining the 
MTD as the dose associated with the target DLT rate (usually 15%-25%), 
according to Equation (l), letting a be the mean of its posterior distribu- 
tion, thus addressing the first and second criticisms of the standard 
method. The original method of OQuigley et a13z involved treating each 
successive patient at the successively recalculated MTD. Because this 
approach required awaiting toxicity results for each successive patient 
and also could result in excessive toxicity,= Goodman et all5 suggested 
escalating in cohorts of two to three patients, no more than one dose 
level at a time and argued that this approach, although conservative, 
resulted in faster escalation than allowed by the standard method. 

Accelerated Titration Design 

Simon et ale proposed using a much richer stochastic model than 
that of Equation 1, to model the toxicity yij for dose level d,, the j* dose 
of the i* patient: 

(2) 
where the coefficient a represents the influence of total prior dose Dij, 
and the normally distributed variables pi and eij represent the effects 
of interpatient variability and intrapatient variability, respectively. (In 
practice, the continuous variable yij is observed as a toxicity grade level 
[none to mild, moderate, dose-limiting, and unacceptable], and each 
grade level corresponds to a range of values for yii.) Simon et a1 used 
this model to analyze historic toxicity data from 20 phase I trials involv- 
ing nine different agents and to perform extensive phase I trial simula- 
tions based on the results of these analyses for a wide variety of designs. 
Using a model that accommodates the possibility of cumulative toxicity 
makes it possible to include toxicity data from courses subsequent to 
the first in both the analyses and the simulations. 

Simon et ale5 concluded that it is safe to conduct the initial dose 

yij = lOg(dij + d i j )  + pi + ~ i j  
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escalations with single-patient cohorts, using 100% increments, reverting 
to use of the standard dose-escalation design, using 40% increments, 
with the first instance of DLT or the second instance of moderate toxicity 
(for patients’ first or subsequent courses). They also concluded that it is 
safe to allow for intrapatient dose escalation so long as the patient 
exhibits no more than mild toxicity on the current dose. Compared with 
the standard design, phase I trial simulations combining these two 
strategies substantially reduced the number of patients required and 
dramatically reduced the number of patients treated without exhibiting 
at least moderate toxicity (and thus, potentially, receiving no biologic 
effect from the agent). Finally, Simon et ale demonstrated that using a 
dose-toxicity model that distinguishes between interpatient and intrapa- 
tient variability allows the investigators to choose a more appropriate 
phase 11 starting dose for an agent for which a subgroup of patients is 
especially prone to serious toxicity. 

Further Considerations 

Several other alternative phase I designs have been proposed for 
special situations. For drugs with variable pharmacokinetic properties 
across species, Collins et a14 suggested that the area under the concentra- 
tion over time curve (AUC), when measurable, may be a more constant 
indicator of drug effect than drug dosage. They proposed accelerating 
the initial dose escalations, using the AUC associated with the MELD,, 
rather than the MELDlo itself, as the target. For drugs with variable dose 
effect based on a patient baseline characteristic (initial white blood cell 
count, in particular), Mick and Ratainm suggested using a dose-toxicity 
model incorporating this additional variable to define both the MTD 
and the dose-escalation schema. For phase I studies of drug combina- 
tions, Korn and Simonz4 point out that there may be a wide variety of 
combined MTDs, involving different drug proportions. They provide 
guidance in arriving at a favorable combination from a dose-intensity 
perspective and in designing the combined dose-escalation schema. 
Phase I studies in children are generally performed after an adult MTD 
has been established, and dose escalation begins at 80% of the adult 
dose to minimize undertreatment.@ Finally in the so-called phase IB 
study of a biologic agent the objective is to find the optimal biologic 
dose (OBD) rather than the MTD. These studies often involve randomly 
allocatin 6 to 10 patients to each of two to four dose levels. The concern 
is that Be biologic endpoint should have at least prognostic clinical 
relevance and that the variability associated with it be sufficiently small 
so that a cohort of 6 to 10 patients per dose will give a sufficiently 
precise indication of biologic effect.@ Outside the phase IB trial, the MTD 
cohort is sometimes expanded to approximately 10 patients. In these 
cases, care should be taken not to overinterpret any responses or, more 
importantly any lack of response. As discussed later, phase 11 trials of 
efficacy are significantly larger than 10 patients and still give only crude 
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indications of response rate. Moreover, 10 patients without response is 
generally insufficient evidence on which to reject the potential efficacy 
of an agent. Most importantly the patient population of phase I trials is 
generally less likely than that of phase 11 trials to exhibit tumor response. 

PHASE II TRIALS 

The objective of a phase I1 study is to determine whether a new 
agent or combination regimen has sufficiently promising biologic activity 
to warrant further, more definitive, clinical testing. Because biologic 
activity may vary by tumor type, phase I1 studies are restricted to a 
particular histology or closely related set of histologies (the uncommon 
exception being a study of loosely related rare histologies). To maximize 
the likelihood of seeing biologic activity in the initial phase II studies of 
an agent, the patient population should be restricted to those with 
maximum performance status and minimum prior chemotherapy.43 If an 
effective standard therapy is available for the patients, it is sometimes 
medically justifiable to postpone that therapy and treat the patients first 
with one or two test courses of the experimental agent, using a so-called 
"window of opportunity" design. After an agent proves its activity in a 
favorable population, it may undergo further testing in a less favorable 
population. 

Basic Phase II Designs 

In the late 1950s, there were few, if any effective agents against 
most forms of cancer; therefore, the primary role of the phase 11 trial 
was to screen out clinically ineffective agents as quickly as p~ssible.'~ 
This goal required a short-term endpoint, indicative of clinical benefit 
and minimally affected by selection bias (the potential for particularly 
promising patients to be favored in accrual to the trial). Tumor shrinkage 
was chosen as the endpoint. Until recently this endpoint restricted 
enrollment in phase I1 trials to patients with bidimensionally measurable 
lesions. Recently an international committee of investigators has pro- 
posed that phase I1 response evaluation be based on the longest tumor 
diameter,= opening phase I1 studies to patients with unidimensional 
lesions. The paucity of active agents in the late 1950s also suggested use 
of a statistical design that allocated the minimal number of patients to 
receive totally ineffective agents. It was determined that a tumor re- 
sponse rate less than 20% was not clinically promising, and Gehan13 
suggested that a run of 14 patients with no response was the minimum 
number necessary to establish with 95% confidence that the true re- 
sponse rate to the agent did not attain this 20% threshold. (In other 
words, if the true response rate was at least 20%, there would be at least 
a 95% likelihood of seeing at least 1 response among 14 patients.) If 
there was no response among 14 patients, the trial would be terminated 
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and declared negative. The standard form of Gehan's design also dictates 
that if at least 1 response is observed among the initial 14 patients, a n  
additional 11 to 16 patients wiU be treated, to allow estimation of 
the response rate with a 95% two-sided confidence interval spanning 
approximately the observed response rate plus or minus 0.1. (With a 
95% two-sided confidence interval of response rates, there is a 97.5% 
confidence that the true response rate does not exceed those in the 
interval; if it did, there would have been more responses than were 
observed with 0.975 probability. Likewise, there is a 97.5% confidence 
that the true response rate does not fall below those in the interval; if it 
did, there would have been fewer responses than were observed with 
0.975 probability.) Estimating the response rate from a phase I1 trial is 
discussed in more detail later. 

As effective anticancer agents were identified in the 1960s and 1970s, 
it became apparent that a more comprehensive statistical approach was 
required for phase 11 trials. The Gehan design gave little guidance 
about how to designate an observed response rate as promising or 
unpromisin nor did it allow for limiting the probability of making an 
error in sucf a designation. Fleming'O proposed a two-stage design that 
involves prospectively defining the minimal response rate (called P,) 
that is sufficiently promising so that the investigators would want, 
with high probability, to recommend further testing of the agent or 
combination, and, likewise, the maximal response rate (Po) that is suffi- 
ciently discouraging so that the investigators would want, with. high 
probability, to recommend no further testing. (In statistical terms, a 
response rate no more than Po is said to satisfy the null hypothesis of no 
treatment benefit, whereas a response rate of at least P, is said to satisfy 
the alternative hypothesis.) Furthermore, the design allows for limiting 
both the type I error (the error of calling an agent promising if the 
response rate is no more than Po) and the type 11 error (the error of 
calling the agent not promising when the response rate is at least P,). 
The design requires that the total sample size of the two stages (n, + n,) 
be sufficiently large so that when the investigators designate the mini- 
mal number of responses (r,) necessary for declaring the agent worthy 
of further testing, the study will have the following property: the 
probability of a false positive (that the number of responses will be at 
least r2 when the true response rate is no more than Po) and the 
probability of a false negative (that the number of responses will be less 
than r, when the true response rate is at least P,) satisfy the desired 
type I and type I1 error bounds, respectively. Finally, the design provides 
for early stopping after approximately half the patients (n,) have been 
accrued, if the results are dramatically positive or negative. This provi- 
sion involves designating bounds r, and a, so that if the number of 
responses among the initial n, patients is at least r1 or at most a,, 
the trial will be terminated early and declared positive or negative, 
respectively. The positive and negative bounds rl and a, are chosen to 
be sufficiently extreme so that the early-stopping option has minimal 
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effect on the type I and type 11 errors which would be obtained from a 
one-stage trial of n, + n2 patients. 

Table 3 gives an example of a Fleming two-stage design to distin- 
guish between response rates of P1 = 20% and Po = 5%, with type I 
and type 11 error rates of 5% and B%, respectively. The total sam le size 
is YZ, + n2 = 40, and the final threshold value for declaring &e trial 
positive is r, = 5 responses (12.5%). Interim stopping occurs at nl = 20 
patients if the number of responses is u1 = 0 or at least rl = 4 (20%). 
These bounds are sufficiently extreme so that the operating characteris- 
tics of the two-stage trial are essentially identical to what they would be 
without the option of early termination. The cohort of three to six 
patients in the standard phase I dose escalation design can be viewed 
as a severely reduced two-stage phase I1 design in which the endpoint 
is dose-limiting toxicity rather than tumor response, and the much 
smaller size results in greatly reduced statistical precision. 

improved Fleming's two-stage design by suggesting that 
early stopping not be allowed for dramatically positive results, in the 
interest of achieving more precise estimates of response rate by accruing 
to the full sample size in these cases. He also suggested that because 
most phase 11 trials are negative, it is appropriate to choose a design 
that minimizes the average sample number (ASN) when the response 
rate is equal to Po. Table 4 gives designs for four commonly chosen pairs 
of Po and Pb with type I and type I1 error rates set at 0.1 (the standard 
choice). In these designs early termination occurs for observed response 
rates less than Po, which occurs with ap roximately 0.55 to 0.65 probabil- 

observed response rates that attain the halfway point between Po and PI. 
In choosing an appropriate two-stage design, investigators must 

make two sets of decisions. First, they must define an appropriate PI 
and Po. In cases in which there are few, or no, effective therapies, Pl is 
generally chosen to be 20%, the conventional lower bound for a promis- 
ing response rate. When a number of effective therapies are available, 
however, PI may be set at 30% to 40%, or higher. In particular, if the 

ity under the null hypothesis, and tK e trial is declared positive for 

Table 3. OPERATING CHARACTERISTICS OF EXAMPLE OF FLEMING TWO-STAGE 
PHASE II DESIGN* 

True Response Rate 

2.5% 5% 10% 15% 20% 25% 

Probability of positive outcome .OM .052 .377 .737 .922 .983 
Probability of positive outcome .002 .016 ,133 .352 .589 775 

Probability of negative outcome .603 .358 .122 .039 .012 .003 

Probability of positive outcome .003 .048 .371 .737 .924 .984 

after stage 1 

after stage 1 

for one-stage trial 

'Design: D e w  the agent promising if at least five responses (12.5%) are observed among the 
total sample of 40 patients. Stop early, after 20 patients, if there are at least four responses (20% 
response rate: agent is declared promising) or if theE are 0 responses (agent is declared not promising). 
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Table 4. EXAMPLES OF SIMON OPTIMAL DESIGNS (a = P = 0.1)” 

Po, St nl, n2S a,, d ASN (P0)ll PET (P0)ll 

5%, 20% 12,25 O%, 11% 23.5 .54 
lo%, 30% 12, 23 8%, 17% 19.8 .65 
20%, 40% 17,20 IS%, 30% 26 .55 
30%. 50% 22.24 32%, 39% 29.9 .67 

The probability of falsely dedaring the trial positive (a-type I error rate), given a true response 
rate equal to Po. and the probability of falsely declaring the trial negative @-type Jl error rate), given a 
true response rate equal to P,, are both equal to 0.1. 

tPo and PI are, respectively, the maximum response rate that is sufliaently discouraging so that 
the investigators would want, with high probability, to recommend no further testing of the agent or 
combination, and, likewise, the minimum wsponse rate that is sufficiently promising so that the 
investigators would want, with high pmbability, to recommend further testing. 

$n, and n2 are, respectively, the sample sizes of the first and second stages of the trial. 
§a, is the upper limit on the observed response rate for terminating the trial after stage 1 and 

declaring it negative (accepting w). r, is the lower limit on the observed response rate for declaring 
the trial positive (rejecting €I,,) after continuing through stage 2. 

lbverage sample number (Po) and PET (Po) are, respectively, the average sample number and the 
probability of early termination, given a true response rate equal to Po. 

phase II trial involves a combination regimen, P1 should be set 10% to 
20% higher than would be attainable with the most active component of 
proven effectiveness. The choice of Po is dictated by the practical need 
to keep the phase I1 trial relatively small. In eneral, Po is set equal to 

second set of decisions involves setting the desired type I (a) and type 
11 (p) error bounds. Common practice is to set both a and p equal to 0.1, 
because it is generally accepted that in phase 11 trials, false-negative 
results (which may terminate development of a useful agent) are at least 
as serious as false-positive results (which result in wasted time and 
resources at the phase 111 level).- In testing agents against solid tumors, 
however, because a large percentage of new agents unfortunately prove 
ineffective, many investigators prefer to use an 01 of 0.05, with a p of 
either 0.1 or 0.2?9 

P1 - 20% (the exception is setting Po to 5% w a en P1 is set to 20%). The 

Estimating the Response Rate from a Phase II Trial 

The Fleming and Simon two-stage designs described previously 
include a precise decision rule relating to whether the results of a trial 
are sufficient to warrant further testing. It is still important, however, to 
obtain an appropriate measure of tumor response. Response rate should 
be measured by dividing the number of responders by the total number 
of patients who received at least one course of therapy. Excluding pa- 
tients who suffer early treatment failure inflates the response rate.16 It is 
also important to calculate a confidence interval for the response rate, to 
reflect the fact that the relatively small phase II trial results in a relatively 
imprecise measure of response rate. Care should be taken to calculate 
this confidence interval correctly. Many investigators make the mistake 
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of naively treating the response estimator as an asymptotically normal 
random variable with a two-sided 95% confidence interval equal to the 
response rate plus or minus 1.96 times the estimated standard deviation: 

(k/n)?1.96,/(Wn)(l -Wn)/(n-l)  (3) 

where k equals the number of responses among n patients. Others 
calculate an exact binomial confidence interval but fail to account for 
the early-stopping option for dramatically negative results and for the 
sacrifice of statistical precision that accompanies the opportunity to 
avoid unnecessarily prolonging a negative trial. An appropriate exact 
binomial two-sided confidence interval for the result of a two-stage 
Simon optimal design, accounting for the early-stopping option, is easily 
calculated on a hand calculator, using the approach of Jennison and 
Turnbull.lg (A more complex alternative approach by Duffy and SantnerS 
is also frequently used.) Table 5 illustrates the significant inaccuracy, for 
low estimated response rates, that can result from using either of the 
other two approaches. For example, if the investigators were to observe 
three responses among the 37 patients, the highest observed response 
rate that would still result in a negative trial, they would know from the 
design of the trial that they were only 90% confident that the true 
response rate falls below PI= 20%, because the /3 (false-negative error 
rate) of this trial design is 10% for a true response rate of 20%. They 
would know, therefore, that the normal approximation and the one-stage 
exact binomial confidence intervals, which ascribe 97.5% confidence to 
the conclusion that the true response rate falls below either 17% or 22%, 
respectively, are both misleading. 

Table 5.95% CONFIDENCE INTERVALS ("NAIVE VERSUS 1-STAGE VERSUS 
2-STAGE) FOR A SIMON OPTIMAL DESIGN (n, = 12, n, = 25, a, = 0, r, = 4, 
(Y = p = 0.1): NUMBER OF RESPONSES = 2-6 OUT OF 37 

Two-Sided 95% Confidence Intervals 
Observed 
Response Naive (Asymptotic 1-Stage (Ignoring 2-Stage (Accounting 

Rate Normal Approximation)' Early Stopping)t for Early Stopping)* 

2/37 = 0.054 (0, 0.128) (0.007, 0.182) (0.009, 0.266) 
3/37 = 0.081 (0, 0.170) (0.017, 0.219) (0.019, 0.272) 
4/37 = 0.108 (0.007, 0.209) (0.030, 0.254) (0.032, 0.285) 
5/37 = 0.135 (0.023, 0.247) (0.045, 0.288) (0.047, 0.305) 
6/37 = 0.162 (0.042, 0.282) (0.062, 0.320) (0.063, 0.330) 

'The naive two-sided 95% confidence interval is obtained by treating the observed response rate 
as an asymptotically normal random variable. It is symmetric except when truncated at zero. 

tThe one-stage confidence interval is obtained by treating the observed number of responses as 
the sum of independent identically distributed binomial random variables, but assuming the sample 
size is tixed at n, + n2. 

$The two-stage confidence interval is obtained by treating the observed number of respnses as 
the sum of independent identically distributed binomial random variables, and accounting for the 
possibility that the trial will terminate at n, patients if the observed number of responses is less than 
a, using the approach of Jennison and Turnbull." 
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Phase II Trials Versus Historical Controls and 
Randomized Phase II Trials 

In determining the appropriate PI and Po for a phase I1 trial, investi- 
gators often use historical data on standard treatments applied to the 
targeted patient population (often restricted to the involved institutions, 
to help assure patient similarity). In particular, if the phase I1 trial 
involves a combined regimen, historical data concerning the component 
agents are used. Although this procedure im lies a comparison between 

ity, the common practice is, unfortunately, to treat the response rate 
derived from the historical data as if it were a constant. Thall and 
Simon5* demonstrate that this practice can lead to a serious underestima- 
tion of the true type I error rate, particularly when the historical data 
are limited, for example, to 40 to 100 patients, from a number of separate 
studies, each with its own separate underlying response rate (reflecting 
interstudy and intrastudy variation). Table 6 shows, in fact, that the true 
a may be as high as 0.10 to 0.15, when the assumed a equals 0.05. 
Clearly, this inflated false-positive rate could lead to a lot of wasted time 
and resources performing phase 111 trials doomed to negative results. 
Furthermore, Thall and Simon51 suggest that in these cases random 
allocation of up to 35% of the patients to the control treatment may help 
compensate for the relatively small number of historical controls. In fact, 
Table 6 shows that placing all the patients on the experimental treatment 
may result in as low as a 55% power to detect the targeted 20% improve- 
ment in response rate, when an 80% power can be attained with the 
same number of patients if some of them are randomly assigned to the 
treatment associated with the historical controls. 

An alternate situation commonly arises from the simultaneous avail- 
ability of several experimental agents for testing in phase I1 trials. These 
agents could be tested in separate trials at separate institutions, but if 
more than one agent seems promising, potential differences in patient 
selection, response assessment, and dosage modification and compliance 
could make the results difficult to compare for purposes of prioritizing 
the agents for further te~ting."~ In this situation, Simon et a147 propose 
using a randomized phase I1 study to assign patients, usually from 
several institutions, randomly to the various experimental treatments. 
Regardless of the difference in rates, the agent demonstrating the highest 
promising response rate would be given the highest priority for further 
testing. Table 7 gives the required sample sizes per arm, for trials of two 
to four arms, to assure, with 90% probability that an agent which has a 
true response rate at least 15% greater than its competitors will be 
chosen. It must be remembered that this design gives no assurance of 
the magnitude of the true difference in response rates. It does not allow 
a definitive com arison of the agents but only a tentative ranking for 

equal underlying response probabilities, the probability is high that one 
will seem superior by chance. Therefore, this approach is not appropriate 

the trial results and historical data, both of w K, 'ch have inherent variabil- 

purposes of fu rJ: er testing. For example, if two or more agents have 
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Table 7. RANDOMIZED PHASE II TRIAL: NUMBER OF PATIENTS PER TREATMENT 
ARM REQUIRED TO GIVE 90% POWER TO CORRECTLY SELECT* A TREATMENT 
YIELDING RESPONSE RATE 15% HIGHER THAN THE HIGHEST OF THE 
OTHER ARMS 

Number of Treatments to be Randomized 
Superior 

Response Ratet 2 3 4 

25% 
35% 
45% 
55% 
65% 

21 
29 
35 
37 
36 

31 
44 
52 
55 
54 

37 
52 
62 
67 
65 

*In this design, the treatment with the highest response rate is assigned the highest priority 
for further testing, regardless of how small the difference in response rates is, compared with the 
other treatments. 

tThe superior response rate is the response rate associated with the best arm. 

for comparing an agent against a control treatment or for comparing a 
combination regimen against one or more of its components. In these 
cases, even if there is no advantage to the experimental regimen, it has 
a 50% probability of seeming at least nominally superior. 

Further Considerations 

In some situations tumor response may be an inappropriate end- 
point. Recently inmasing attention has been given to cytostatic agents, 
which serve to reduce or halt tumor growth or metastatic spread. If 
these agents are to be assessed in a phase 11 trial, time to progression is 
most often the best endpoint. Also, in some diseases such as lung cancer, 
tumor response has not proven to predict for a survival advantage; in 
other diseases such as brain and prostate cancer, response may be 
difficult to measure, and few patients may have measurable disease. In 
these diseases, time to progression or survival may be the best phase I1 
endpoint.@ Because time to progression and survival have been found 
to be more affected by patient selection factors than is tumor response, 
these situations require a careful choice of the historical controls or a 
careful use of randomization. In other situations, toxicity is of such 
concern that it should be incorporated into the phase I1 decision process, 
along with tumor response.” 5, 52 Further discussions concerning both 
standard and new phase I1 designs may be found in the articles by Thall 
and 

In some situations a phase I1 study of a new regimen is of little 
value and one may proceed directly from the phase I determination of 
MTD to a randomized phase 111 comparison. This would be the case if 
the schedule of administration has been altered in a way that is unlikely 
to affect efficacy dramatically or if an additional agent or modality of 
known efficacy has been added. In either case, a one-armed phase 11 

and by Mariani and Mar~bini.2~ 
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study is unlikely to provide useful information concerning the added 
benefit. Certainly, if a known regimen has been altered to make it less 
toxic, a one-armed phase I1 study is likely to be useless in demonstrating 
equivalent efficacy. On the other hand, if a modulator has been added 
to an agent in hopes of sigrufrcantly boosting its efficacy, and there is 
some doubt as to whether the modulator will have any effect whatso- 
ever, it may be useful to conduct a phase I1 study before the phase I11 
comparison, especially if a biologic endpoint can be identified which 
would suggest the presence or absence of effective modulation. 

PHASE 111 TRIALS 

The objective of a phase I11 trial is to determine definitively the 
clinical efficacy of an experimental agent or regimen, compared with a 
standard treatment, which may be observation. In rare circumstances 
the standard treatment may be so clearly inadequate or the experimental 
treatments may be so promising that the investigators feel compelled to 
compare the experimental treatments against historical controls. The 
potential for introducing selection bias (in favor of the experimental 
regimen or against it), which may or may not be identifiable from 
a comparison of baseline prognostic variables, suggests that use of 
randomized controls is almost alwa s necessary. This necessity is espe- 
cially true in oncology trials, in d i c h  the anticipated benefits of the 
experimental treatment, compared with the standard, are generally 
small.16, 

In statistical terms, the objective of a phase III trial is to test the null 
hypothesis (of no treatment difference) against the alternative hypothe- 
sis. The alternative hypothesis is often one-sided, restricted to the case 
where the experimental treatment is superior, because often there is no 
interest in proving that the experimental treatment is actually worse 
than the control. Otherwise, the alternative hypothesis is two-sided, and 
investigators look for a statistically sigruficant treatment difference in 
either direction. Unfortunately, recently the distinction between one- 
sided and two-sided alternative h otheses has been blurred; in a desire 
to be conservative investigators i? ave come to accept a two-sided 0.05 
significance level as the appropriate standard of proof, preferring to give 
up the one-sided designation, even when appropriate, rather than re- 
place the conventional 0.05 sigruficance level with a 0.025 sigrufrcance 
level. 

Phase 111 Trial Design 

rimary endpoint of a phase 111 trial is generally survival, 
because &s endpoint best defines clinical benefit and is totall objective. 

obscure the benefit of the experimental treatment, other endpoints such 

The 

Occasionally, if there is concern that use of effective salvage x erapy will 
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as progression-free survival (defined as time from randomization to 
death or progression, whichever comes first) may be chosen as primary.43 
Use of progression as the primary endpoint may be misleading; the 
primary endpoint should always include deaths, which may be treat- 
ment-related.43 The patient population of a phase I11 trial should be as 
inclusive as possible to allow maximal generalization of the trial results 
to the potential beneficiaries.I6, 43 

The first consideration in designing and administering a phase I11 
trial is prevention of bias, which is any systematic design flaw that 
favors one treatment arm over the others. A valid randomization, in 
which the treatment arm is not known to the investigator at patient 
registration, protects against the kind of selection bias that may be 
introduced by using historical controls or by revealing the treatment 
arm before the patient is entered on trial. The primary analysis should 
be an intention to treat analysis, including all eligible patients 
randomized.16, 43 Excluding early deaths could exclude deaths that are 
treatment-related. Excluding patient withdrawals or patients with seri- 
ous protocol violations, on the grounds that they did not receive suffi- 
cient therapy to benefit, could bias the results, because these patients 
could have a prognosis that differs by treatment arm. Indeed, eligibility 
exclusions should be made only on the basis of information that relates 
to patient status before randomization and that is available independent 
of treatment arm. Extreme care should be taken that patients are never 
excluded on the basis of factors that might have been influenced by 
treatment or treatment-arm assignment. For example, excluding patients 
who refuse treatment would introduce bias if patients with poor progno- 
sis refused the more toxic treatment more often than the less toxic one. 
Finally, loss to follow-up not associated with end of study may differ by 
treatment arm and by current status of patient and therefore may intro- 
duce bias. For the final analysis and all interim analyses, all endpoint 
data should be brought up-to-date as of a uniform cut-off date. Covert 
loss to follow-up associated with data not being updated uniformly 
could also differ by treatment arm and by patient status. For the final 
analysis, in particular, survival data should be acquired from national 
death indices for patients lost to follow-up. 

A second major consideration in designing a phase I11 trial is re- 
stricting the type I error, which is the probability of observing a statisti- 
cally significant treatment difference when, in fact, there is none. By 
convention, type I error in phase I11 trials is almost always restricted to 
0.05.43 Endpoint comparisons should all be planned prospectively and 
kept to a minimum, with the total type I error controlled by use of the 
Bonferroni adjustment (allocating to each comparison an appropriate 
fraction of the total type I error, usually 1 / k where there are k compari- 
sons). In general, it is best to restrict to a single primary endpoint. 
Otherwise, use of the Bonferroni adjustment, where the multiple end- 
points are likely to be positively correlated, reduces the ability of the 
trial to detect a potential treatment effect. Ad hoc analyses should be 
avoided, and subset analyses should be kept to a minimum, with the 
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results treated as exploratory." More than two treatment arms may be 
used, but it may be best to restrict the treatment arm comparisons 
prospectively to those of interest (rather than making all possible com- 
parisons), to minimize the cost of the Bonferroni adjustment for each 
one. Finally, the interim monitoring plan should be defined prospectively 
so that the multiple interim analyses may be accounted for in defining 
the total type I error (because these multiple analyses are correlated in 
a determinable way, it is not necessary to use the Bonferroni adjustment). 

A third major consideration in designing a phase 111 trial is re- 
stricting the type I1 error, which is the probability of failing to detect a 
medically sigruficant benefit associated with use of an experimental 
treatment. By convention, type I1 error in phase I11 trials is almost always 
restricted to 0.1 to 0.2." More precisely, the investigators must first 
idenhfy the minimal difference in the primary endpoint which would 
be considered medically sigruficant. If the primary endpoint is survival 
(or some other time-to-event endpoint, such as disease-free survival), 
the most efficient comparison is generally by means of the log-rank test 
(as described later), and this minimal difference is best expressed as 
a percentage increase in median survival associated with use of the 
experimental treatment. The log-rank test is statistically optimal (and, in 
particular, more efficient than comparing estimated survival percentages 
for the treatment arms at a particular time point) if the death rates (or, 
more generally, the event rates) of the experimental and control arms, 
over time, maintain a constant proportion, which is the assumption 
made in using this test.=, 36 This constant proportion in the death rates 
can be shown to be the multiplicative inverse of the ratio of median 
survival times. It is far better to express the treatment difference in terms 
of the ratio of median survival times (or, equivalently, in terms of 
the percentage increase in median survival associated with use of the 
experimental treatment) than in terms of the difference in survival per- 
centages at a given time. For example, a ratio of two in median survival 
times gives rise to survival percentages of 90% versus 81% (a 9% differ- 
ence) at an early time point and gives rise to survival percentages of 
50% versus 25% (a 25% difference) later on. Determination of the ratio 
that corresponds to the minimal clinically sigruficant difference depends 
on the median survival of the control treatment arm. For a control 
median survival of only 4 months, the minimal clinically sigruficant 
difference may be determined to be a 100% increase in median survival 
associated with the experimental treatment. On the other hand, for a 
control median survival of 4 years, the minimal clinically sigruficant 
difference may be determined to be a 25% increase in median survival. 

Once the minimal clinically sigruficant difference has been defined 
and the desired type I error rate bound has been set, the investigators 
may assure the desired power (which is equivalent to restricting the 
type 11 error, because power is 1 minus the type II error), for trials in 
which survival comparisons are made by the log-rank test, by assuring 
that a sufficient number of deaths (or, more generally events) are ob- 
served. It has been shown36 that the power of the log-rank test depends 
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on the number of observed deaths, not on the number of patients, and 
that the required number of observed deaths can be calculated from the 
equation: 

(4) 
where D, and D, represent the numbers of deaths observed on the 
control and experimental arms, respectively, A represents the median 
survival ratio targeted as the minimal medically sigruficant difference, 
and Z, and Z, represent the standard normal (1 - a) and (1 - p) quantiles, 
respectively, corresponding to the specified type I (a) and 11 (p) error 
bounds. The requirement of Equation 4 can be very closely approximated 
by the following simplified requirement, in terms of the total number of 
deaths D = D, + D,: 

(5) 

1/Dc + 1/De = (m)2/(Zo:+Z,)z 

D = 4(Z, + zpP/(M)2 
Table 8 gives the required number of observed deaths, for survival 
comparisons based on the log-rank test, for a range of deltas (1.25-2), 
for one-sided and two-sided 0.05 type I error rates, and for 0.8 or 0.9 
power. If the investigators wish, instead, to base the survival comparison 
on a percentage survival at a prespecified time point (for example, at 5 
years beyond randomization), other methods for calculating sample size 
to assure desired power are available." 

Two types of phase 111 trials deserve special mention. In some trials, 
the experimental treatment is conservative and is expected to be less 
toxic than the standard treatment. For these equivalency trials, the objec- 
tive is to demonstrate that the experimental treatment has efficacy equiv- 
alent, but not necessarily superior, to that of the standard. In other 
words, the experimental treatment will be preferred over the standard 
unless the null hypothesis of no treatment difference is rejected in favor 
of the standard treatment. Therefore, in contrast with the usual scenario, 
a type 11 error involves mistakenly discarding a proven treatment (the 
standard) in favor of an unproven one (the experimental), which has, in 
fact, lesser efficacy. This is a more serious error than the type I error, 
which, in this case, involves failing to accept an unproven treatment (the 
experimental), which has equivalent efficacy and lesser toxiaty com- 
pared with a proven treatment (the standard). Therefore, equivalency 
studies should be designed to have small type I1 error (0.05-0.1) and 
may have relatively larger (0.1-0.2) type I error.a3 Also, as pointed out 
by Simon," the investigators should make sure that the experimental 
treatment retains sigruficantly more efficacy than no treatment at all. 

A second special form of phase 111 trial, the factorial study, is de- 
signed to answer two therapeutic questions, instead of one, at little 
additional costM The design involves simultaneously testing two experi- 
mental approaches which are thought to have no interaction. For exam- 
ple, a surgical adjuvant trial may involve randomizing patients to che- 
motherapy versus none and also randomizing patients in each of these 
two treatment groups to immunotherapy versus none. The four treat- 
ment arms are not compared individually. Instead, the two arms with 
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chemotherapy are compared with the two without, and the two arms 
with immunotherapy are compared with the two arms without. Each of 
these two simultaneous comparisons is done at the 0.025 significance 
level to maintain an overall type I error of 0.05. The sample size need 
be only 18% larger than that of a two-armed study addressing only one 
question. The investigators must be certain, a priori, however, that no 
treatment interaction exists between the two modalities. A negative 
interaction, in particular, would seriously reduce the power of the trial 
to answer either treatment question, and any interaction would make it 
difficult to assess the individual treatment effects with sufficient preci- 
sion. It must also be stressed that the factorial study lacks adequate 
power to test for intera~tion.~~ 

Phase 111 Trial Analysis 

Some phase I11 trial endpoints, such as tumor response or survival 
to a particular time point beyond randomization (for example, 5 years), 
are binomial variables and can be analyzed as such.ls The success rate 
(response or survival) for each treatment can be estimated by kln, where 
k is the number of successes and n is the number of patients. In this 
case, the estimated success rates can be treated as asymptotically normal 
with standard deviations and confidence intervals calculated as in Equa- 
tion 3, and statistical comparisons can be made in the usual way? 

Most phase I11 trial endpoints, however, are survival times, such as 
time to death or time to progression, and for many patients the study 
ends (in statistical terms, the time is censored) before the endpoint occurs.' 
For these patients, it is known that the survival time exceeds the time to 
censorship, but the exact survival time is not known. The statistical 
challenge is to make appropriate use of this partial information, both in 
calculating survival time distributions and in comparing survival be- 
tween treatments. 

The Kaplan-Meier product-limit estimator is the standard estimator 
of the probability of surviving the event of interest (which, for concrete- 
ness, is taken to be death), for every time point, and was developed to 
make full and accurate use of the censored survival data.*l It is a 
nonparametric empiricd survival estimator, which means that it does not 
rely on estimating the parameters of a particular survival distribution 
form, such as the exponential, nor does it involve any a priori assump- 
tions about the shape of the survival distribution curve, but uses only 
the data themselves. For each patient, time is measured from point of 
randomization. The estimator assigns a discrete probability of death to 
each time point for which a death is observed and to only those time 
points. For the death time ti the actual probability is taken to be di/n,, 
where di is the number of deaths observed at time ti, and ni is the 
number of patients still at risk (those who have not died or been 
censored yet) at time ti. Likewise, the probability of surviving a small 
interval about ti, which contains no other death times, is taken to be 
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(n, - d,) / n,. The probability estimator of surviving through time t is taken 
to be the product of all the individual survival estimates associated with 
surviving through the individual death times t, which fall below t: 

As the number of observed death times increases, the estimator s(t) 
approaches the smooth survival function which accurately gives the 
probability of survival for each time point t. Hence the name, product- 
limit estimator. Its variance may be conservatively estimated3 as 

30) = l-I*t1~t(n1-d1)/n1 (6) 

Vur[S(t)I = S2( t)J( 1 - S( t ) )  / N( t )  (7) 
where N(t) is the number of patients still at risk (those who have not 
died or been censored) at time t. (An alternative variance estimator', 21 is 
given by the Greenwood formula.) 

33 is the standard test 
used to compare survival distributions in the presence of censored data. 
It is also nonparametric, in that it makes no assumptions concerning the 
distributions to be compared, except that the ratio of the death rates 
remains constant over time. It is based on the following reasoning. At 
each observed death time t, (where, as for the Kaplan-Meier estimator, 
time is measured from point of randomization, for each patient), d,  
deaths are observed from the experimental group (out of d, deaths total 
for the experimental plus control groups). If the hazard of death is e ual 
for the two groups (the null hypothesis), then in each case, d l e l a s  
expectation d,(n,/n,), where n, is the number of patients at risk at time 
t, in the experimental group and n, is the total number of patients at risk 
at time t,. Therefore, under the null hypothesis, the s u m  of the observed 
d,'s minus the sum of their respective expectations is asymptotically 
normal with mean 0. Divided by its estimated standard deviation, this 
difference is a standard normal variable, under the null hypothesis, 
which can be used to test the equality of the survival distributions.' 

Linear regression, a standard statistical tool for simultaneously relat- 
ing an outcome variable to a set of covariates, has been applied to 
survival data by means of the Cox model? In standard linear regression, 
the outcome variable is modeled as the sum of a constant term plus the 
individual covariates, each multiplied by an associated coefficient. For 
each data point (or patient), the statistician has measures of the outcome 
variable and the associated covariates. By finding the best fit for the 
linear model, he estimates the effect of each covariate on the outcome 
variable. In the Cox model, it is assumed that the death rate X is a 
function of time t and a set of prognostic covariates x, and that it is 
made up of an underlying death rate X,(t), over time, which is increased 
or decreased multiplicatively as a result of the effects of the prognostic 
covariates. In other words, it is assumed that the logarithm of the death 
rate is modeled as the sum of the logarithm of the underlying death 
rate plus the individual covariates, each multiplied by an associated 
coefficient: 

The log-rank test, proposed by Mantel,l, 

M(t,x,,. . .,x,) = MOW +U,Xl+ . . . +&X, (8)  
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All the usual linear regression methods are available,' by which the 
death rate can be related to the prognostic covariates, and the methods 
for fitting the model8 to the death times and their associated prognostic 
covariate values, across the patients, are given by  COX.^ 

Phase 111 Trial Monitoring 

When patients are randomly allocated to a particular treatment on 
a clinical trial, there is an implicit understanding that neither arm has 
shown itself inferior to the other. It is imperative that the investigators 
are diligent in thus protecting the interests of the randomly allocated 
patients. On the other hand, the scientific integrity of the trial must be 
protected from the potential inflation of type I error by multiple un- 
planned interim analyses12 and from the potential inflation of type I1 
error by premature closure, either intentionally or because of a fall-off 
of accrual from prematurely disenchanted investigators. It has become 
required practice in phase I11 trials, particularly in oncology, that specific 
interim monitoring guidelines for early trial analysis and stopping be 
written into the protocol and be enforced uniformly by a data monitoring 
committee." It has also become required practice on NCI-sponsored 
phase I11 trials that these committees be independent of the investigators 
conducting the trial. This independent monitoring avoids any conflict, 
real or apparent, with investigators' professional interests, and it insu- 
lates the investigators randomizing and treating patients from the possi- 
ble effects of exposure to potentially misleading early trends in the data. 

Broadly speaking, two situations call for consideration of early trial 
stopping: either the experimental treatment has already proven itself 
superior, or it has become apparent that it will not prove superior. To 
address the first situation, that of early positive stopping, OBrien and 
Fleming31 propose the use of conservative (high) upper bounds on the 
log-rank test statistic, restricting early positive stopping to the extreme 
situations in which the log-rank test statistic exceeds these bounds. The 
result is that the final analysis, in the event that early stopping does not 
occur, may proceed almost as if early stopping were not an option. 
Their approach involves defining in advance the number of interim 
monitoring analyses and their times (in terms of numbers of deaths 
observed). The significance level of the final analysis, assuming no early 
stopping, is adjusted to reflect the amount of type I error associated 
with the possibility of early stopping under the null hypothesis. Because 
early stopping is restricted to extreme situations by the OBrien-Fleming 
approach, and these situations are very rare under the null hypothesis, 
the amount of type I error used by allowing for early stopping is 
relatively small. 

To address early positive stopping, DeMets and Lan7 propose a 
more flexible method which does not require predefining either the 
number or times of the interim monitoring analyses. First, the investiga- 
tors define the rate at which they wish to expend type I error across 
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potential interim monitoring times, with respect to percent of total 
number of deaths observed. In other words, they define how they will 
divide the total probability of false rejection of the null hypothesis (0.05), 
across the time period of the trial. For example, if they wish to adapt 
the conservative OBrien-Fleming philosophy they would allow only 
approximately 0.005 probability of early stopping, under the null hy- 
pothesis, before seeing 50% of the total number of deaths (no matter 
how many interim analyses occur), out of the total 0.05 probability 
allowed for falsely rejecting the null hypothesis, across all analyses, 
interim plus final. Once this alpha spending function has been defined, 
the investigators are free to conduct interim monitoring analyses at 
convenient times (such as just before annual or semiannual meetings of 
the data monitoring committee), so long as they set stopping bounds on 
the log-rank statistic, at each successive interim analysis, which corre- 
spond to an expenditure of type I (a) error that is in accordance with 
their predefined time table. 

To address the situation in which the interim data analysis indicates 
that the experimental treatment will almost certainly not prove superior 
to the control, even if the trial is continued to its planned number of 
observed deaths, Lan et a P  propose stochastic curtailment. They propose 
that a trial be terminated early if, given the current data and assuming 
that the targeted minimal treatment difference, in fact, pertains, the 
likelihood of rejecting the null hypothesis, if the trial is continued to the 
required number of observed deaths, is no more than 20%. This approach 
is conservative because if such a situation pertains, the estimated treat- 
ment difference, based on the current data, would surely not favor the 
experimental treatment by the targeted minimal amount, if at all. Lan et \ 

alZ show that this approach increases type I1 error by less than 25% 
relative to the fixed design. (For example, if the fixed design had 90% 
power to detect the targeted minimal treatment difference, allowing for 
stochastic curtailment in the event of early nonfavorable results would 
still yield at least 87.5% power.) Wieand et a P  propose a simpler ap- 
proach to negative early stopping. They propose terminating the trial 
when half the required deaths are observed if the observed treatment 
difference, no matter how small, favors the control treatment. They 
argue that this approach leaves the power of the trial to detect the 
targeted treatment difference virtually unchanged. 

Either the approach of Lan et a P  or that of Wieand et alS for 
negative trial stopping may be used in conjunction with the OBrien- 
Fleming bounds31 for positive trial stopping. The resulting asymmetric 
stopping bounds are entirely appropriate, because the treatment compar- 
ison is usually asymmetric. Investigators are interested in disproving the 
null hypothesis of no treatment difference only in one direction, that is, 
in that which corresponds to superiority of the experimental treatment. 
Generally investigators do not care whether the experimental treatment 
is definitely inferior to the control; if it is not superior, it is of no further 
interest. Two-sided OBrien-Fleming bounds,3l which result in early stop- 
ping only if one treatment appears dramatically superior, should be 
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used only when two experimental treatments are being compared and 
the null hypothesis will be rejected only if there is a significant treatment 
difference in one direction or the other. Unfortunately, as discussed 
previously, the growing practice of using a two-sided 0.05 significance 
level, in the interest of being conservative, even when the inherent 
comparison is one-sided, sometimes leads to the inappropriate use of 
symmetric early stopping bounds. This practice could result in continu- 
ing allocation of patients to a decidedly inferior experimental treatment, 
well beyond the point at which its lack of superiority to the control has 
been demonstrated. 

Another approach to interim monitoring, which may be used for 
either one-sided or two-sided comparisons, is by means of the rqeated 
confidence intervals of Jennison and Turnbull.2° In this approach, for 
example, two-sided 95% confidence intervals are constructed repeatedly 
over the interim monitoring times, so that the true value stays within 
the repeated confidence intervals with 95% probability. One may stop 
early and reject the null hypothesis if it falls outside the repeated 
confidence interval. Likewise, in the case of one-sided treatment compar- 
isons, one may stop early and accept the null hypothesis if the targeted 
minimal treatment difference falls outside the repeated confidence inter- 
val. 

Further statistical issues arising from the use of early stopping 
guidelines are discussed in the literat~re.~, 11, In particular, estimates of 
treatment difference may be biased after early termination or even when 
the trial goes to completion, if early termination was an option. An 
advantage of OBrien-Fleming and the negative stopping ap- 
proach of Wieand et a P  is that, in either case, if the trial proceeds to 
completion, estimates of treatment difference are left virtually un- 
changed. 

Phase 111 Trial Reporting 

There is a significant literature on the failings of statistical reporting, 
and how these failings relate to weaknesses in trial design and analy~is.3~ 
Conversely, there have been attempts to enforce improvements in trial 
design and analysis by having the medical journals enforce correspond- 
ing guidelines for clinical trial reporting. Simon and Wittes& and a 
recent international consortium,2 in particular, give such guidelines. The 
synthesis of these guidelines, and those of are summarized 
here. This summary outlines and underscores important statistical issues 
of design, analysis, and monitoring. These guidelines have some applica- 
bility to phase I and I1 trials, as well. 

Statistical Guidelines for Reporting Clinical Trials 

subgroup or covariate analyses. 
Introduction. Prospectively state defined hypotheses and planned 
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Methods. Describe the planned study population and inclusion and 
exclusion criteria. Give the primary and secondary outcome measures 
and the minimal important differences and indicate how the target 
sample size was projected. Describe the rationale and methods for statis- 
tical analyses. Give the prospectively defined stopping rules. Describe 
the method of randomization. Give the number of eligible patients not 
entered or not randomly allocated and the reasons. Briefly describe the 
methods used to ensure that the data are complete and accurate, that all 
patients entered on study are reported, and that the assessment of major 
endpoints is reliable. The study should not have an inevaluability rate 
for major endpoints in excess of 15%. 

Results. For each randomly allocated group, give the timing of 
follow-up and the number of patients withdrawn or lost to follow-up. 
Not more than 15% of eligible patients should be lost to follow-up. State 
the estimated effect of treatment on primary and secondary outcome 
measures, including point estimate and confidence interval. Sigruficance 
tests not relating to prespecified hypotheses must be considered explor- 
atory. Present summary data and appropriate descriptive and inferential 
statistics in sufficient detail to permit alternative analyses and replica- 
tion. Describe prognostic variables by treatment group and any attempt 
to adjust for them. Describe protocol deviations, including the number 
of randomly allocated patients subsequently found ineligible or not 
treated as assigned, together with the reasons. State interpretation of 
study findings, including sources of bias and imprecision. 
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